A Secondary Tracer Approach to the Derivation of Galactic Cosmic-ray Source Isotopic Abundances
نویسندگان
چکیده
A formalism has been developed for deriving cosmic-ray source isotopic abundances from observed local abundances using a purely secondary nuclide as a tracer of spallation production during propagation. Although the formalism is based on the leaky-box model of cosmic-ray propagation, it is shown that source abundances derived by the tracer technique are reasonably independent of detailed propagation models. The tracer formalism also permits a quantitative evaluation of the effects of observational uncertainties on deduced source abundances. It is shown that statistical errors in the observed abundances and uncertainties in the spallation cross sections are at present the dominant sources of uncertainty. The latter error can be reduced with increased detector size or exposure time, while the former can be minimized by measurements of the relative production cross sections. As a specific example, the tracer technique is applied to the isotopes of sulfur and calcium, and the level of uncertainties which must be achieved to distinguish evolutionary differences between solar-system material and cosmic ray-source material are established. Subject headings: cosmic rays: abundancesnuclear reactions
منابع مشابه
Superbubbles, Wolf-Rayet stars, and the origin of galactic cosmic rays
The abundances of neon and several other isotopic ratios in the galactic cosmic rays (GCRs) have been measured using data from the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE). We have derived the Ne/Ne ratio at the cosmic-ray source using the measured Ne, F, and O abundances as “tracers” of secondary isotope production. Using this approach, the Ne/Ne ab...
متن کاملGCR Neon Isotopic Abundances: Comparison with Wolf-Rayet Star Models and Meteoritic Abundances
Measurements of the neon isotopic abundances from the ACE-CRIS experiment are presented. These abundances have been obtained in seven energy intervals over the energy range of ~80<E<280 MeV/nucleon. The Ne/Ne source ratio is derived using the measured Ne/Ne abundance as a "tracer" of secondary production of the neon isotopes. We find that the Ne/Ne abundance ratio at the cosmic-ray source is a ...
متن کاملThe Isotopic Composition of Galactic Cosmic-ray Iron Nuclei
We report high-resolution observations made in interplanetary space of 83-284 MeV per nucleon galactic cosmic-ray iron isotopes and directly establish that 56Fe is the dominant cosmic-ray Fe isotope. We find the following percentage abundances for Fe at the cosmic-ray source: 54Fe = 9(+8, -5)%, 55Fe:::; 7%, 56Fe = 91(+5, -11)%, 57Fe:::; 8%, and 58Fe:::; 6%. When compared to calculated nucleosyn...
متن کاملCosmic-ray Sources and Source Composition
Present data on cosmic-ray elemental and isotopic relative abundances are shown to be unable to distinguish between various models of cosmic-ray sources and their composition. For example, the model of freshly nucleosynthesized material from supernova explosions as the cosmic-ray source is unable to account for some measured, key cosmic-ray elemental abundances. This and two other models are ev...
متن کامل30TH INTERNATIONAL COSMIC RAY CONFERENCE Can Ni Synthesized in OB Associations Decay to Co Before Being Accelerated to Cosmic-ray Energies?
Observations from the Cosmic Ray Isotope Spectrometer (CRIS) aboard NASA’s Advanced Composition Explorer (ACE) have shown that all relevant galactic cosmic-ray isotopic ratios measured are consistent with an OB-association origin of galactic cosmic rays (GCRs). Additionally CRIS measurements of the isotopic abundances of Ni and Co have shown that the Ni has completely decayed into Co, indicatin...
متن کامل